Search results for "Besov space"

showing 10 items of 22 documents

On fractional smoothness and Lp-approximation on the Wiener space

2015

Real interpolationBesov spacesStochastic analysis on a Gaussian spaceApproximation of stochastic integralsRiemann-Liouville operators
researchProduct

Smoothness spaces of higher order on lower dimensional subsets of the Euclidean space

2015

We study Sobolev type spaces defined in terms of sharp maximal functions on Ahlfors regular subsets of R n and the relation between these spaces and traces of classical Sobolev spaces. This extends in a certain way the results of Shvartsman (20) to the case of lower dimensional subsets of the Euclidean space.

Pure mathematicsEight-dimensional spaceEuclidean spaceGeneral Mathematics010102 general mathematicsMathematical analysisSpace (mathematics)01 natural sciencesSobolev inequalitySobolev space0103 physical sciencesBesov spaceInterpolation space010307 mathematical physicsBirnbaum–Orlicz space0101 mathematicsMathematicsMathematische Nachrichten
researchProduct

Pointwise characterizations of Besov and Triebel–Lizorkin spaces and quasiconformal mappings

2011

Abstract In this paper, the authors characterize, in terms of pointwise inequalities, the classical Besov spaces B ˙ p , q s and Triebel–Lizorkin spaces F ˙ p , q s for all s ∈ ( 0 , 1 ) and p , q ∈ ( n / ( n + s ) , ∞ ] , both in R n and in the metric measure spaces enjoying the doubling and reverse doubling properties. Applying this characterization, the authors prove that quasiconformal mappings preserve F ˙ n / s , q s on R n for all s ∈ ( 0 , 1 ) and q ∈ ( n / ( n + s ) , ∞ ] . A metric measure space version of the above morphism property is also established.

Mathematics(all)Quasiconformal mappingPure mathematicsGeneral MathematicsGrand Besov spaceMetric measure spaceTriebel–Lizorkin spaceCharacterization (mathematics)Space (mathematics)Triebel–Lizorkin space01 natural sciencesMeasure (mathematics)Quasisymmetric mappingMorphism0101 mathematicsBesov spaceHajłasz–Besov spaceMathematicsPointwiseta111010102 general mathematicsGrand Triebel–Lizorkin spaceQuasiconformal mappingHajłasz–Triebel–Lizorkin space010101 applied mathematicsBesov spaceFractional Hajłasz gradientAdvances in Mathematics
researchProduct

Interpolation and approximation in L2(γ)

AbstractAssume a standard Brownian motion W=(Wt)t∈[0,1], a Borel function f:R→R such that f(W1)∈L2, and the standard Gaussian measure γ on the real line. We characterize that f belongs to the Besov space B2,qθ(γ)≔(L2(γ),D1,2(γ))θ,q, obtained via the real interpolation method, by the behavior of aX(f(X1);τ)≔∥f(W1)-PXτf(W1)∥L2, where τ=(ti)i=0n is a deterministic time net and PXτ:L2→L2 the orthogonal projection onto a subspace of ‘discrete’ stochastic integrals x0+∑i=1nvi-1(Xti-Xti-1) with X being the Brownian motion or the geometric Brownian motion. By using Hermite polynomial expansions the problem is reduced to a deterministic one. The approximation numbers aX(f(X1);τ) can be used to descr…

Real interpolationStochastic approximationBesov spacesJournal of Approximation Theory
researchProduct

Adaptive Wavelet Methods for SPDEs

2014

We review a series of results that have been obtained in the context of the DFG-SPP 1324 project “Adaptive wavelet methods for SPDEs”. This project has been concerned with the construction and analysis of adaptive wavelet methods for second order parabolic stochastic partial differential equations on bounded, possibly nonsmooth domains \(\mathcal{O}\subset \mathbb{R}^{d}\). A detailed regularity analysis for the solution process u in the scale of Besov spaces \(B_{\tau,\tau }^{s}(\mathcal{O})\), 1∕τ = s∕d + 1∕p, α > 0, p ≥ 2, is presented. The regularity in this scale is known to determine the order of convergence that can be achieved by adaptive wavelet algorithms and other nonlinear appro…

Stochastic partial differential equationPure mathematicsWaveletSeries (mathematics)Rate of convergenceBesov spaceOrder (ring theory)Context (language use)Minimax approximation algorithmMathematics
researchProduct

Smoothing properties of the discrete fractional maximal operator on Besov and Triebel-Lizorkin spaces

2013

Motivated by the results of Korry, and Kinnunen and Saksman, we study the behaviour of the discrete fractional maximal operator on fractional Hajlasz spaces, Hajlasz-Besov, and Hajlasz-Triebel-Lizorkin spaces on metric measure spaces. We show that the discrete fractional maximal operator maps these spaces to the spaces of the same type with higher smoothness. Our results extend and unify aforementioned results. We present our results in a general setting, but they are new already in the Euclidean case.

Pure mathematicsGeneral MathematicsMetric measure spaceSpace (mathematics)Triebel–Lizorkin spaceMeasure (mathematics)Triebel-Lizorkin spaceFOS: Mathematics46E35Birnbaum–Orlicz spaceLp spaceBesov spacefractional Sobolev spaceMathematicsMathematics::Functional Analysista111Mathematical analysisFractional Sobolev spaceFunctional Analysis (math.FA)Fractional calculusMathematics - Functional Analysismetric measure space42B25 46E35fractional maximal functionBesov spaceInterpolation spaceFractional maximal function42B25
researchProduct

The Besov capacity in metric spaces

2016

We study a capacity theory based on a definition of Haj{\l} asz-Besov functions. We prove several properties of this capacity in the general setting of a metric space equipped with a doubling measure. The main results of the paper are lower bound and upper bound estimates for the capacity in terms of a modified Netrusov-Hausdorff content. Important tools are $\gamma$-medians, for which we also prove a new version of a Poincar\'e type inequality.

Discrete mathematicsGeneral Mathematics010102 general mathematicsType inequalitykapasiteetti01 natural sciencesMeasure (mathematics)Upper and lower boundsmetriset avaruudetFunctional Analysis (math.FA)Theory basedMathematics - Functional Analysis010101 applied mathematicsMetric spaceBesov spacesContent (measure theory)FOS: Mathematics0101 mathematicsMathematics
researchProduct

Spectral Invariance for Algebras of Pseudodifferential Operators on Besov Spaces of Variable Order of Differentiation

1992

Pure mathematicsPseudodifferential operatorsGeneral MathematicsBesov spaceOrder (group theory)MathematicsVariable (mathematics)Mathematische Nachrichten
researchProduct

A space of projections on the Bergman space

2010

We define a set of projections on the Bergman space A 2 , which is parameterized by an ane subset of a Banach space of holomorphic functions in the disk and which includes the classical Forelli-Rudin projections.

Discrete mathematicsMathematics::Functional AnalysisPure mathematicsMathematics::Complex VariablesGeneral MathematicsInfinite-dimensional vector functionHolomorphic functionBanach spaceMathematics::General TopologyQuotient space (linear algebra)Continuous functions on a compact Hausdorff spaceBergman spaceBesov spaceBergman kernelMathematicsAnnales Academiae Scientiarum Fennicae Mathematica
researchProduct

Bounded compositions on scaling invariant Besov spaces

2012

For $0 < s < 1 < q < \infty$, we characterize the homeomorphisms $��: \real^n \to \real^n$ for which the composition operator $f \mapsto f \circ ��$ is bounded on the homogeneous, scaling invariant Besov space $\dot{B}^s_{n/s,q}(\real^n)$, where the emphasis is on the case $q\not=n/s$, left open in the previous literature. We also establish an analogous result for Besov-type function spaces on a wide class of metric measure spaces as well, and make some new remarks considering the scaling invariant Triebel-Lizorkin spaces $\dot{F}^s_{n/s,q}(\real^n)$ with $0 < s < 1$ and $0 < q \leq \infty$.

Mathematics::Functional AnalysisQuasiconformal mappingPure mathematics46E35 30C65 47B33Function spaceComposition operator010102 general mathematicsta11116. Peace & justiceTriebel–Lizorkin space01 natural sciencesFunctional Analysis (math.FA)Mathematics - Functional AnalysisMathematics - Classical Analysis and ODEsBounded function0103 physical sciencesClassical Analysis and ODEs (math.CA)FOS: MathematicsBesov space010307 mathematical physics0101 mathematicsInvariant (mathematics)ScalingAnalysisMathematicsJournal of Functional Analysis
researchProduct